Спиральные галактики, в том числе и наша, состоят из очень старой сферической составляющей (в этом они похожи на эллиптические галактики) и из более молодой плоской составляющей, находящейся в спиральных рукавах.
Между этими составляющими существует несколько переходных компонентов разного уровня сплюснутости, разного возраста и скорости вращения. Строение спиральных галактик, таким образом, сложнее и разнообразнее, чем строение эллиптических. Спиральные галактики кроме этого вращаются значительно быстрее, чем галактики эллиптические. Не следует забывать, что они образовались из быстро вращающихся вихрей сверхгалактики. Поэтому в создании спиральных галактик участвовали и гравитационная и центробежная силы.
Если бы из нашей галактики через сто миллионов лет после ее возникновения (это время формирования сферической составляющей) улетучился весь межзвездный водород, новые звезды не смогли бы рождаться, и наша галактика стала бы эллиптической.
Но межзвездный газ в те далекие времена не улетучился, и, таким образом гравитация и вращение могли продолжать строительство нашей и других спиральных галактик. На каждый атом межзвездного газа действовали две силы - гравитация, притягивающая его к центру галактики и центробежная сила, выталкивающая его по направлению от оси вращения. В конечном итоге газ сжимался по направлению к галактической плоскости. В настоящее время межзвездный газ сконцентрирован к галактической плоскости в весьма тонкий слой. Он сосредоточен,  прежде всего, в спиральных рукавах и представляет собой плоскую или промежуточную составляющую, названную звездным населением второго типа.
На каждом этапе сплющивания межзвездного газа во все более утончающийся диск рождались звезды. Поэтому в нашей галактике можно найти, как старые, возникшие примерно десять миллиардов лет назад, так и звезды, родившиеся недавно в спиральных рукавах, в так называемых ассоциациях и рассеянных скоплениях. Можно сказать, что чем более сплющена система, в которой родились звезды, тем они моложе.

2.1  Происхождение солнечной системы

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.
И все же мы до сих пор довольно далеки от решения этой проблемы. Но за последние три десятилетия прояснился вопрос о путях эволюции звезд. И хотя детали рождения звезды из газово-пылевой туманности еще далеко не ясны, мы теперь четко представляем, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции.
Переходя к изложению различных космогонических гипотез, сменявших одна другую на протяжении двух последних столетий, начнем с гипотезы великого немецкого философа Канта и теории, которую спустя несколько десятилетий независимо предложил французский математик Лаплас. Предпосылки к созданию этих теорий выдержали испытание временем.
Точки зрения Канта и Лапласа в ряде важных вопросов резко отличались. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - будущее Солнце, а потом планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей с высокой скоростью вращения. Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил от него последовательно отделялись кольца. Потом они конденсировались, образуя планеты.
Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на различия, общей важной особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Поэтому и принято называть эту концепцию «гипотезой Канта-Лапласа».
Однако эта теория сталкивается с трудностью. Наша Солнечная система, состоящая из девяти планет разных размеров и масс, обладает особенностью: необычное распределение момента количества движения между центральным телом - Солнцем и планетами.
Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему можно рассмотреть Солнце и окружающие его планеты. Момент количества движения можно определить как «запас вращения» системы. Это вращение складывается из орбитального движения планет и вращения вокруг осей Солнца и планет.
Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна.
С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда от первоначальной, быстро вращающейся туманности отделилось кольцо, слои туманности, из которых потом сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца (так как угловые скорости кольца и оставшихся частей были примерно одинаковы), так как масса последнего была значительно меньше основной туманности («протосолнца»), то полный момент количества движения кольца должен быть много меньше, чем у «протосолнца». В гипотезе Лапласа отсутствует какой-либо механизм передачи момента от «протосолнца» к кольцу.
Поэтому в течение всей дальнейшей эволюции момент количества движения «протосолнца», а затем и Солнца должен быть много больше, чем у колец и образовавшихся из них планет. Но этот вывод противоречит с фактическим распределением количества движения между Солнцем и планетами. Для гипотезы Лапласа эта трудность оказалась непреодолимой.
Остановимся на гипотезе Джинса, получившей распространение в первой трети текущего столетия. Она полностью противоположна гипотезе Канта- Лапласа. Если последняя рисует образование планетарных систем как единственный закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая.
Исходная материя, из которой потом образовались планеты, была выброшена из Солнца (которое к тому времени было уже достаточно «старым» и похожим на нынешнее) при случайном прохождении вблизи него некоторой звезды. Это прохождение был настолько близким, что его можно рассматривать практически как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца.
Если бы гипотеза Джинса была правильной, число планетарных систем, образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать по пальцам. Но планетарных систем фактически много, следовательно, эта гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Таким образом, космологическая гипотеза Джинса оказалась несостоятельной.
Выдающийся советский ученый О.Ю.Шмидт в 1944 году предложил свою теорию происхождения Солнечной системы: наша планета образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти «современный» вид. При этом никаких трудностей с вращением момента планет не возникало, так как первоначально момент вещества облака может быть сколь угодно большим.
Начиная с 1961 года эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. По обеим гипотезам “почти современное” Солнце сталкивается с более или менее «рыхлым» космическим объектом, захватывая части его вещества. Тем самым образование планет связывается с процессом звездообразования.

Заключение

Изложенные выше направления поиска свидетельств существования антропоморфной цивилизации во Вселенной основываются на ряде теоретических положений о возникновении и закономерностях развития цивилизаций. Эти положения можно сформулировать так:
1) жизнь во Вселенной возникает непрерывно, начиная с образования звезд второго поколения, т.е. примерно в течение последних 12 млрд. лет;
2) внеземные космические цивилизации возникают эволюционным путем непрерывно последние  8 млрд. лет;
3) существует закон неограниченной экспансии разумной жизни, т.е. стремление исследовать и занять максимальное пространство;
4) цивилизации достигают уровня, при котором возможна практически неограниченная скорость непрерывного производства энергии.
Наша цивилизация находится на пороге этого качественно нового рубежа своего развития.
Непрерывность возникновения жизни и цивилизаций во Вселенной, а также возможность производства неограниченных количеств энергии были главными теоретическими положениями, на которых строились выводы о существовании ярких свидетельств деятельности космических цивилизаций во Вселенной.
Действительно, неограниченные возможности энергопроизводства и большое время жизни в технологической фазе старых цивилизаций допускают все, что только не противоречит законам природы (физики, химии, биологии и др.).
Возможно создание гигантских астроинженерных сооружений, посылка мощнейших электромагнитных сигналов на всю Вселенную, даже передвижение звезд, их столкновения, взрывы и т.п. Одним словом, возможна перестройка всей Галактики.
Прежде всего, мы должны отказаться от положения, что все не запрещенное физическим законом будет обязательно реализовано. Нужно искать предельные возможности в развитии цивилизации, определяемые не только физическими, но и биологическими и социальными требованиями. Это очень сложно и кажется полностью неопределенным, поскольку социальные закономерности вряд ли могут быть предсказаны на астрономические сроки. Для цивилизации важны такие категории, как цель, целесообразность, затраты труда, времени, энергии и материальных ресурсов.
Однако практически все указанные категории связаны с энергопроизводством и, что ценно, могут быть выражены через него количественно. Энергопроизводство  определяет материальный и духовный прогресс общества. Возможности цивилизации целиком будут определяться возможностями энергопроизводства.

Список  используемой литературы

1. В.В. Кесарев. Эволюция вещества во вселенной.
2. Концепции современного естествознания. Учебник. / Под ред. Лавриненко. – М.: ЮНИТИ-ДАНА, 2001.
3. Проблема поиска внеземных цивилизаций. М.: Наука, 1998.
4. Трицкий В.С.  Земля и Вселенная, 2000.  №  1.
5. Шкловский И.С. Вселенная, жизнь, разум.  М.: Наука, 1997.
informsky.ru
1 2 3